Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
ACS Appl Mater Interfaces ; 16(15): 18285-18299, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38574184

RESUMO

Changes in diet culture and modern lifestyle contributed to a higher incidence of gastrointestinal-related diseases, including gastritis, implicated in the pathogenesis of gastric cancer. This observation raised concerns regarding exposure to di(2-ethylhexyl) phthalate (DEHP), which is linked to adverse health effects, including reproductive and developmental problems, inflammatory response, and invasive adenocarcinoma. Research on the direct link between DEHP and gastric cancer is ongoing, and further studies are required to establish a conclusive association. In our study, extremely low concentrations of DEHP exerted significant effects on cell migration by promoting the epithelial-mesenchymal transition in gastric cancer cells. This effect was mediated by the modulation of the PI3K/AKT/mTOR and Smad2 signaling pathways. To address the DEHP challenges, our initial design of TPGS-conjugated fucoidan, delivered via pH-responsive nanoparticles, successfully demonstrated binding to the P-selectin protein. This achievement has not only enhanced the antigastric tumor efficacy but has also led to a significant reduction in the expression of malignant proteins associated with the condition. These findings underscore the promising clinical therapeutic potential of our approach.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Neoplasias Gástricas , Humanos , Plastificantes , Fosfatidilinositol 3-Quinases
2.
Antimicrob Agents Chemother ; 68(4): e0095623, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38446062

RESUMO

Viral RNA-dependent RNA polymerase (RdRp), a highly conserved molecule in RNA viruses, has recently emerged as a promising drug target for broad-acting inhibitors. Through a Vero E6-based anti-cytopathic effect assay, we found that BPR3P0128, which incorporates a quinoline core similar to hydroxychloroquine, outperformed the adenosine analog remdesivir in inhibiting RdRp activity (EC50 = 0.66 µM and 3 µM, respectively). BPR3P0128 demonstrated broad-spectrum activity against various severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern. When introduced after viral adsorption, BPR3P0128 significantly decreased SARS-CoV-2 replication; however, it did not affect the early entry stage, as evidenced by a time-of-drug-addition assay. This suggests that BPR3P0128's primary action takes place during viral replication. We also found that BPR3P0128 effectively reduced the expression of proinflammatory cytokines in human lung epithelial Calu-3 cells infected with SARS-CoV-2. Molecular docking analysis showed that BPR3P0128 targets the RdRp channel, inhibiting substrate entry, which implies it operates differently-but complementary-with remdesivir. Utilizing an optimized cell-based minigenome RdRp reporter assay, we confirmed that BPR3P0128 exhibited potent inhibitory activity. However, an enzyme-based RdRp assay employing purified recombinant nsp12/nsp7/nsp8 failed to corroborate this inhibitory activity. This suggests that BPR3P0128 may inhibit activity by targeting host-related RdRp-associated factors. Moreover, we discovered that a combination of BPR3P0128 and remdesivir had a synergistic effect-a result likely due to both drugs interacting with separate domains of the RdRp. This novel synergy between the two drugs reinforces the potential clinical value of the BPR3P0128-remdesivir combination in combating various SARS-CoV-2 variants of concern.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , COVID-19 , Pirazóis , Quinolinas , Humanos , SARS-CoV-2/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Simulação de Acoplamento Molecular , Tratamento Farmacológico da COVID-19 , Antivirais/química
3.
Diabetes Metab Syndr Obes ; 16: 3915-3923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077482

RESUMO

Purpose: To explore the relationships between serum tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), high-sensitivity C-reactive protein (hs-CRP) levels and glucolipid metabolism disorders (GLMD) in obese children and adolescents. Patients and Methods: In this cross-sectional study, 105 obese children and adolescents were selected for the detection of TNF-α, IL-6, hs-CRP, and glycolipid metabolism indicators. All participants were divided into elevated TNF-α group (≥8.1 pg/mL; n=49) and normal TNF-α group (<8.1 pg/mL; n=56), elevated IL-6 group (≥5.9 pg/mL; n=13) and normal IL-6 group (<5.9 pg/mL; n=92), elevated hs-CRP group (≥3.0 mg/L; n=44) and normal hs-CRP group (<3.0 mg/L; n=61), respectively. Results: Low-density lipoprotein cholesterol (LDL-C) in the elevated TNF-α group was higher than that in the normal TNF-α group (P=0.010). TNF-α was positively correlated with LDL-C (P=0.005). Fasting insulin (FINS) and homeostasis model assessment of insulin resistance (HOMA-IR) in the elevated IL-6 group were higher than those in the normal IL-6 group (all for P <0.05), while high-density lipoprotein cholesterol (HDL-C) in the elevated IL-6 group was lower than that in the normal IL-6 group (P<0.001). IL-6 was positively correlated with FINS, 2-hour postprandial insulin, HOMA-IR and triglyceride (all for P <0.01), while was negatively correlated with HDL-C (P=0.006). Moreover, hs-CRP was positively correlated with FINS and HOMA-IR (all for P <0.05). Conclusion: There may be correlations between serum TNF-α, IL-6, hs-CRP levels and GLMD in obese children and adolescents. Attention should be paid to monitoring serum inflammatory factors and preventing their elevation in obese children and adolescents, thus reducing the occurrence of GLMD.

4.
Phytomedicine ; 121: 155113, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37748388

RESUMO

BACKGROUND: Accumulating evidence suggested increasing energy expenditure is a feasible strategy for combating obesity, and browning of white adipose tissue (WAT) to promote thermogenesis might be one of the attractive ways. Hydroxy-α-sanshool (HAS), a natural amide alkaloid extracted from the fruits of Zanthoxylum bungeanum Maxim, possesses lots of benefits in lipid metabolism regulation. METHODS: The anti-obesity effect of HAS was investigated by establishing an animal model of obesity and a 3T3-L1 differentiation cell model. Effects of HAS on the whole-body fat and liver of obese mice, and the role of HAS in inducing browning of white fat were studied by Micro CT, Metabolic cage detection, Cell mitochondrial pressure detection, transmission electron microscopy and cold exposure assays. Furthermore, the Real-time PCR (qPCR), digital PCR (dPCR), western blot, Co-immunoprecipitation (Co-IP), molecular docking, drug affinity responsive target stability (DARTS), Cellular thermal shift assay (CETSA) and other methods were used to investigate the target and mechanisms of HAS. RESULTS: We found that treatment with HAS helped mice combat obesity caused by a high fat diet (HFD) and improve metabolic characteristics. In addition, our results suggested that the anti-obesity effect of HAS is related to increase energy consumption and thermogenesis via induction of browning of WAT. The further investigations uncovered that HAS can up-regulate UCP-1 expression, increase mitochondria number, and elevate the cellular oxygen consumption rates (OCRs) of white adipocytes. Importantly, the results indicated that browning effects of HAS is closely associated with SIRT1-dependent PPAR-γ deacetylation through activating the TRPV1/AMPK pathway, and TRPV1 is the potential drug target of HAS for the browning effects of WAT. CONCLUSIONS: Our results suggested the HAS can promote browning of WAT via regulating AMPK/SIRT-1/PPARγ signaling, and the potential drug target of HAS is the membrane receptor of TRPV1.


Assuntos
PPAR gama , Zanthoxylum , Camundongos , Animais , PPAR gama/metabolismo , Frutas , Simulação de Acoplamento Molecular , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Branco , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Alcamidas Poli-Insaturadas/farmacologia , Dieta Hiperlipídica/efeitos adversos , Células 3T3-L1 , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/farmacologia
5.
Biophys Rep ; 9(1): 45-56, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37426199

RESUMO

Abnormal histone modifications (HMs) can promote the occurrence of breast cancer. To elucidate the relationship between HMs and gene expression, we analyzed HM binding patterns and calculated their signal changes between breast tumor cells and normal cells. On this basis, the influences of HM signal changes on the expression changes of breast cancer-related genes were estimated by three different methods. The results showed that H3K79me2 and H3K36me3 may contribute more to gene expression changes. Subsequently, 2109 genes with differential H3K79me2 or H3K36me3 levels during cancerogenesis were identified by the Shannon entropy and submitted to perform functional enrichment analyses. Enrichment analyses displayed that these genes were involved in pathways in cancer, human papillomavirus infection, and viral carcinogenesis. Univariate Cox, LASSO, and multivariate Cox regression analyses were then adopted, and nine potential breast cancer-related driver genes were extracted from the genes with differential H3K79me2/H3K36me3 levels in the TCGA cohort. To facilitate the application, the expression levels of nine driver genes were transformed into a risk score model, and its robustness was tested via time-dependent receiver operating characteristic curves in the TCGA dataset and an independent GEO dataset. At last, the distribution levels of H3K79me2 and H3K36me3 in the nine driver genes were reanalyzed in the two cell lines and the regions with significant signal changes were located.

6.
Front Pharmacol ; 14: 1141180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909175

RESUMO

As the common pathological basis of various cardiovascular diseases, the morbidity and mortality of atherosclerosis (AS) have increased in recent years. Unfortunately, there are still many problems in the treatment of AS, and the prevention and treatment of the disease is not ideal. Up to now, the occurrence and development of AS can roughly include endothelial cell dysfunction, vascular smooth muscle cell proliferation, inflammation, foam cell production, and neoangiogenesis. Among them, endothelial dysfunction, as an early event of AS, plays a particularly important role in promoting the development of AS. In addition, oxidative stress occurs throughout the causes of endothelial dysfunction. Some previous studies have shown that flavonoids derived from herbal medicines are typical secondary metabolites. Due to its structural presence of multiple active hydroxyl groups, it is able to exert antioxidant activity in diseases. Therefore, in this review, we will search PubMed, Web of Science, Elesvier, Wliey, Springer for relevant literature, focusing on flavonoids extracted from herbal medicines, and summarizing how they can prevent endothelial dysfunction by inhibiting oxidative stress. Meanwhile, in our study, we found that flavonoid represented by quercetin and naringenin showed superior protective effects both in vivo and in vitro, suggesting the potential of flavonoid compounds in the treatment of AS.

7.
Cells ; 12(6)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36980210

RESUMO

Liver cancer is one of the most lethal cancers in the world, mainly owing to the lack of effective means for early monitoring and treatment. Accordingly, there is considerable research interest in various clinically applicable methods for addressing these unmet needs. At present, the most commonly used biomarker for the early diagnosis of liver cancer is alpha-fetoprotein (AFP), but AFP is sensitive to interference from other factors and cannot really be used as the basis for determining liver cancer. Treatment options in addition to liver surgery (resection, transplantation) include radiation therapy, chemotherapy, and targeted therapy. However, even more expensive targeted drug therapies have a limited impact on the clinical outcome of liver cancer. One of the big reasons is the rapid emergence of drug resistance. Therefore, in addition to finding effective biomarkers for early diagnosis, an important focus of current discussions is on how to effectively adjust and select drug strategies and guidelines for the treatment of liver cancer patients. In this review, we bring this thought process to the drug resistance problem faced by different treatment strategies, approaching it from the perspective of gene expression and molecular biology and the possibility of finding effective solutions.


Assuntos
Neoplasias Hepáticas , alfa-Fetoproteínas , Humanos , alfa-Fetoproteínas/metabolismo , Detecção Precoce de Câncer , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/diagnóstico , Biomarcadores , Resistência a Medicamentos
8.
EBioMedicine ; 90: 104500, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36893587

RESUMO

BACKGROUND: Despite the advent of improved therapeutic options for advanced prostate cancer, the durability of clinical benefits is limited due to inevitable development of resistance. By constitutively sustaining androgen receptor (AR) signaling, expression of ligand-binding domain truncated AR variants (AR-V(ΔLBD)) accounts for the major mechanism underlying the resistance to anti-androgen drugs. Strategies to target AR and its LBD truncated variants are needed to prevent the emergence or overcome drug resistance. METHODS: We utilize Proteolysis Targeting Chimeras (PROTAC) technology to achieve induced degradation of both full-length AR (AR-FL) and AR-V(ΔLBD) proteins. In the ITRI-PROTAC design, an AR N-terminal domain (NTD) binding moiety is appended to von-Hippel-Lindau (VHL) or Cereblon (CRBN) E3 ligase binding ligand with linker. FINDINGS: In vitro studies demonstrate that ITRI-PROTAC compounds mechanistically degrade AR-FL and AR-V(ΔLBD) proteins via ubiquitin-proteasome system, leading to impaired AR transactivation on target gene expression, and inhibited cell proliferation accompanied by apoptosis activation. The compounds also significantly inhibit enzalutamide-resistant growth of castration resistant prostate cancer (CRPC) cells. In castration-, enzalutamide-resistant CWR22Rv1 xenograft model without hormone ablation, ITRI-90 displays a pharmacokinetic profile with decent oral bioavailability and strong antitumor efficacy. INTERPRETATION: AR NTD that governs the transcriptional activities of all active variants has been considered attractive therapeutic target to block AR signaling in prostate cancer cells. We demonstrated that utilizing PROTAC for induced AR protein degradation via NTD represents an efficient alternative therapeutic strategy for CRPC to overcome anti-androgen resistance. FUNDING: The funding detail can be found in the Acknowledgements section.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Quimera de Direcionamento de Proteólise , Ligantes , Nitrilas/uso terapêutico , Linhagem Celular Tumoral , Proteólise
9.
Biomed J ; 46(2): 100587, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36849044

RESUMO

Since December 2019, the Coronavirus disease 2019 (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has spread rapidly around the world, overburdening healthcare systems and creating significant global health concerns. Rapid detection of infected individuals via early diagnostic tests and administration of effective therapy remains vital in pandemic control, and recent advances in the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated proteins (Cas) system may support the development of novel diagnostic and therapeutic approaches. Cas-based SARS-CoV-2 detection methods (FnCAS9 Editor Linked Uniform Detection Assay (FELUDA), DNA endonuclease-targeted CRISPR trans reporter (DETECTR), and Specific High-sensitivity Enzymatic Reporter Unlocking (SHERLOCK)) have been developed for easier handling compared to quantitative polymerase chain reaction (qPCR) assays, with good rapidity, high specificity, and reduced need for complex instrumentation. Cas-CRISPR-derived RNA (Cas-crRNA) complexes have been shown to reduce viral loads in the lungs of infected hamsters, by degrading virus genomes and limiting viral replication in host cells. Viral-host interaction screening platforms have been developed using the CRISPR-based system to identify essential cellular factors involved in pathogenesis, and CRISPR knockout (CRISPRKO) and activation screening results have revealed vital pathways in the life cycle of coronaviruses, including host cell entry receptors (ACE2, DPP4, and ANPEP), proteases involved in spike activation and membrane fusion (cathepsin L (CTSL) and transmembrane protease serine 2 (TMPRSS2)), intracellular traffic control routes for virus uncoating and budding, and membrane recruitment for viral replication. Several novel genes (SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin, subfamily A, member 4 (SMARCA4), ARIDIA, and KDM6A) have also been identified via systematic data mining analysis as pathogenic factors for severe CoV infection. This review highlights how CRISPR-based systems can be applied to investigate the viral life cycle, detect viral genomes, and develop therapies against SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Interações entre Hospedeiro e Microrganismos , Pandemias , Pulmão , Teste para COVID-19 , DNA Helicases , Proteínas Nucleares , Fatores de Transcrição
10.
J Microbiol Immunol Infect ; 56(2): 246-256, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36639348

RESUMO

Prostate cancer (PCa) is one of the most common malignancies in men; recently, PCa-related mortality has increased worldwide. Although androgen deprivation therapy (ADT) is the standard treatment for PCa, patients often develop aggressive castration-resistant PCa (CRPC), indicating the presence of an alternative source of androgen. Clostridium scindens is a member of the gut microbiota and can convert cortisol to 11ß-hydroxyandrostenedione (11ß-OHA), which is a potent androgen precursor. However, the effect of C. scindens on PCa progression has not been determined. In this study, androgen-dependent PCa cells (LNCaP) were employed to investigate whether C. scindens-derived metabolites activate androgen receptor (AR), which is a pivotal step in the development of PCa. Results showed that cortisol metabolites derived from C. scindens-conditioned medium promoted proliferation and enhanced migration of PCa cells. Furthermore, cells treated with these metabolites presented activated AR and stimulated AR-regulated genes. These findings reveal that C. scindens has the potential to promote PCa progression via the activation of AR signaling. Further studies on the gut-prostate axis may help unravel an alternative source of androgen that triggers CRPC exacerbation.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Próstata/metabolismo , Androgênios/metabolismo , Androgênios/farmacologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Antagonistas de Androgênios/metabolismo , Antagonistas de Androgênios/farmacologia , Hidrocortisona/metabolismo , Hidrocortisona/farmacologia , Linhagem Celular Tumoral
11.
Front Pharmacol ; 13: 1089558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582530

RESUMO

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by hyperglycemia. The fruits of Zanthoxylum bungeanum Maxim. is a common spice and herbal medicine in China, and hydroxy-α-sanshool (HAS) is the most abundant amide in Z. bungeanum and reported to have significant hypoglycemic effects. The purpose of this study was to evaluate the ameliorative effects of HAS on T2DM and the potential mechanisms responsible for those effects. An acute toxicity test revealed the median lethal dose (LD50) of HAS is 73 mg/kg. C57BL/6 J mice were fed a high-fat diet and given an intraperitoneal injection of streptozotocin (STZ) to induce T2DM in mice to evaluate the hypoglycemic effects of HAS. The results showed that HAS significantly reduced fasting blood glucose, reduced pathological changes in the liver and pancreas, and increased liver glycogen content. In addition, glucosamine (GlcN)-induced HepG2 cells were used to establish an insulin resistance cell model and explore the molecular mechanisms of HAS activity. The results demonstrated that HAS significantly increases glucose uptake and glycogen synthesis in HepG2 cells and activates the PI3K/Akt pathway in GlcN-induced cells, as well as increases GSK-3ß phosphorylation, suppresses phosphorylation of glycogen synthase (GS) and increases glycogen synthesis in liver cells. Furthermore, these effects of HAS were blocked by the PI3K inhibitor LY294002. The results of our study suggest that HAS reduces hepatic insulin resistance and increases hepatic glycogen synthesis by activating the PI3K/Akt/GSK-3ß/GS signaling pathway.

12.
Front Immunol ; 13: 1046810, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439173

RESUMO

As a type of metalloproteinase, matrix metalloproteinases (MMPs) can be divided into collagenase, gelatinase, stromelysins, membrane-type (MT)-MMPs and heterogeneous subgroups according to their structure and function. MMP contents in the human body are strictly regulated, and their synthesis, activation and inhibition processes should be kept in a certain balance; otherwise, this would result in the occurrence of various diseases. Rheumatoid arthritis (RA) is a known immune-mediated systemic inflammatory disease that is affected by a variety of endogenous and exogenous factors. In RA development, MMPs act as important mediators of inflammation and participate in the degradation of extracellular matrix substrates and digestion of fibrillar collagens, leading to the destruction of joint structures. Interestingly, increasing evidence has suggested that herbal medicines have many advantages in RA due to their multitarget properties. In this paper, literature was obtained through electronic databases, including the Web of Science, PubMed, Google Scholar, Springer, and CNKI (Chinese). After classification and analysis, herbal medicines were found to inhibit the inflammatory process of RA by regulating MMPs and protecting joint structures. However, further preclinical and clinical studies are needed to support this view before these herbal medicines can be developed into drugs with actual application to the disease.


Assuntos
Artrite Reumatoide , Humanos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Metaloproteinases da Matriz/metabolismo , Inflamação , Matriz Extracelular/metabolismo
13.
Front Pharmacol ; 13: 937289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36210852

RESUMO

Neurodegenerative disease is a progressive neurodegeneration caused by genetic and environmental factors. Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) are the three most common neurodegenerative diseases clinically. Unfortunately, the incidence of neurodegenerative diseases is increasing year by year. However, the current available drugs have poor efficacy and large side effects, which brings a great burden to the patients and the society. Increasing evidence suggests that occurrence and development of the neurodegenerative diseases is closely related to the mitochondrial dysfunction, which can affect mitochondrial biogenesis, mitochondrial dynamics, as well as mitochondrial mitophagy. Through the disruption of mitochondrial homeostasis, nerve cells undergo varying degrees of apoptosis. Interestingly, it has been shown in recent years that the natural agents derived from herbal medicines are beneficial for prevention/treatment of neurodegenerative diseases via regulation of mitochondrial dysfunction. Therefore, in this review, we will focus on the potential therapeutic agents from herbal medicines for treating neurodegenerative diseases via suppressing apoptosis through regulation of mitochondrial dysfunction, in order to provide a foundation for the development of more candidate drugs for neurodegenerative diseases from herbal medicine.

14.
Eur J Anaesthesiol ; 39(11): 858-867, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36106493

RESUMO

BACKGROUND: Emergence agitation is a common paediatric complication after inhalational anaesthesia. Intranasal dexmedetomidine can prevent emergence agitation effectively, but the optimal dose is uncertain. OBJECTIVE: The aim of our study was to investigate the 95% effective dose (ED 95 ) of intranasal dexmedetomidine for the prevention of emergence agitation after inhalational anaesthesia for paediatric ambulatory surgery. DESIGN: A prospective, randomised, placebo-controlled, double-blind, clinical trial. SETTING: The study was conducted in Guangzhou Women and Children's Medical Center in China from August 2017 to December 2018. PATIENTS: Three hundred and eighteen children scheduled for ambulatory surgery were enrolled into two age groups of less than 3 years and at least 3 years. INTERVENTIONS: The children in each age group were randomised into five equal subgroups to receive either intranasal dexmedetomidine 0.5, 1.0, 1.5 or 2.0 µg kg -1 (Groups D 0.5 , D 1.0 , D 1.5 and D 2.0 ), or intranasal isotonic saline (group C) after induction. MAIN OUTCOME MEASURES: The primary outcome was the ED 95 dose of intranasal dexmedetomidine for preventing emergence agitation after inhalational anaesthesia for paediatric ambulatory surgery. RESULTS: The incidences of emergence agitation for Groups C, D 0.5 , D 1.0 , D 1.5 and D 2.0 were 63, 40, 23, 13 and 3% in children less than 3 years, and 43, 27, 17, 7 and 3% in children at least 3 years. The ED 95 of intranasal dexmedetomidine for preventing emergence agitation was 1.99 µg kg -1 [95% confidence interval (CI), 1.83 to 3.80 µg kg -1 ] in children less than 3 years, and 1.78  µg kg -1 (95% CI, 0.93 to 4.29 µg kg -1 ) in children at least 3 years. LMA removal time for groups D 1.5 and D 2.0 was 9.6 ±â€Š2.2 and 9.7 ±â€Š2.5 min, respectively, for children less than 3 years, and 9.4 ±â€Š2.0 and 9.9 ±â€Š2.7 min in children at least 3 years, respectively. Length of stay in the postanaesthesia care unit for Groups D 1.5 and D 2.0 was 34.3 ±â€Š9.6 and 37.1 ±â€Š11.2 min, respectively, in children less than 3 years, and 34.7 ±â€Š10.2 and 37.3 ±â€Š8.3 min in children at least 3 years, respectively. These times were longer in the D 1.5 and D 2.0 subgroups than in the control subgroup in the two age groups of less than 3 years and at least 3 years, respectively: 7.2 ±â€Š1.9 min in children less than 3 years and 7.3 ±â€Š2.5 min in children at least 3 years for LMA removal time, 22.2 ±â€Š7.9 min in children less than 3 years and 22.0 ±â€Š7.7 min in children at least 3 years for PACU stay time in control subgroup, respectively ( P  < 0.05). CONCLUSION: Intranasal dexmedetomidine prevented emergence agitation after paediatric surgery in a dose-dependent manner. The optimal dose of intranasal dexmedetomidine for preventing emergence agitation was higher in younger children. TRIAL REGISTRY: chictr.org.cn: ChiCTR-IOR-17012415.


Assuntos
Anestésicos Inalatórios , Dexmedetomidina , Delírio do Despertar , Anestesia por Inalação/efeitos adversos , Anestésicos Inalatórios/efeitos adversos , Criança , Pré-Escolar , Dexmedetomidina/efeitos adversos , Método Duplo-Cego , Delírio do Despertar/diagnóstico , Delírio do Despertar/epidemiologia , Delírio do Despertar/etiologia , Feminino , Humanos , Hipnóticos e Sedativos/uso terapêutico , Estudos Prospectivos , Agitação Psicomotora/diagnóstico , Agitação Psicomotora/epidemiologia , Agitação Psicomotora/etiologia
15.
J Biomed Sci ; 29(1): 29, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534851

RESUMO

BACKGROUND: Castration-resistant prostate cancer (CRPC) with sustained androgen receptor (AR) signaling remains a critical clinical challenge, despite androgen depletion therapy. The Jumonji C-containing histone lysine demethylase family 4 (KDM4) members, KDM4A‒KDM4C, serve as critical coactivators of AR to promote tumor growth in prostate cancer and are candidate therapeutic targets to overcome AR mutations/alterations-mediated resistance in CRPC. METHODS: In this study, using a structure-based approach, we identified a natural product, myricetin, able to block the demethylation of histone 3 lysine 9 trimethylation by KDM4 members and evaluated its effects on CRPC. A structure-based screening was employed to search for a natural product that inhibited KDM4B. Inhibition kinetics of myricetin was determined. The cytotoxic effect of myricetin on various prostate cancer cells was evaluated. The combined effect of myricetin with enzalutamide, a second-generation AR inhibitor toward C4-2B, a CRPC cell line, was assessed. To improve bioavailability, myricetin encapsulated by poly lactic-co-glycolic acid (PLGA), the US food and drug administration (FDA)-approved material as drug carriers, was synthesized and its antitumor activity alone or with enzalutamide was evaluated using in vivo C4-2B xenografts. RESULTS: Myricetin was identified as a potent α-ketoglutarate-type inhibitor that blocks the demethylation activity by KDM4s and significantly reduced the proliferation of both androgen-dependent (LNCaP) and androgen-independent CRPC (CWR22Rv1 and C4-2B). A synergistic cytotoxic effect toward C4-2B was detected for the combination of myricetin and enzalutamide. PLGA-myricetin, enzalutamide, and the combined treatment showed significantly greater antitumor activity than that of the control group in the C4-2B xenograft model. Tumor growth was significantly lower for the combination treatment than for enzalutamide or myricetin treatment alone. CONCLUSIONS: These results suggest that myricetin is a pan-KDM4 inhibitor and exhibited potent cell cytotoxicity toward CRPC cells. Importantly, the combination of PLGA-encapsulated myricetin with enzalutamide is potentially effective for CRPC.


Assuntos
Antineoplásicos , Produtos Biológicos , Flavonoides , Neoplasias de Próstata Resistentes à Castração , Androgênios/farmacologia , Androgênios/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Flavonoides/farmacologia , Glicolatos , Glicóis/farmacologia , Glicóis/uso terapêutico , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/farmacologia , Masculino , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores Androgênicos/uso terapêutico
16.
Environ Sci Pollut Res Int ; 29(48): 72159-72168, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35460485

RESUMO

In this study, cationic polyacrylamide (CPAM)-modified diatomite and cetyl trimethyl ammonium bromide (CTAB)-modified diatomite were synthesized and used as conditioners for sewage sludge dewatering. The effects of these two types of modified diatomite on the dewaterability and settling performance of the activated sludge were studied. The mechanisms of the two modified diatomite types in the activated sludge system were elucidated. The efficiency of the CPAM-modified diatomite was better than that of the CTAB-modified diatomite in improving the settleability and dewaterability of sludge. The results indicated that specific resistance to filtration (SRF) was decreased from 8.52 × 1012 to 0.92 × 1012 m/Kg, and the water content in the remaining sludge cake after pumping filtration was decreased from 92.2 to 68.1% by adding 0.4% of CPAM-modified diatomite and pH = 3.5, which resulted in excellent sludge settling of activated sludge. Further studies showed that the polymer/surfactant adsorbed in diatomite increased sludge dewaterability and improved the sedimentation rate owing to stripping extracellular polymeric substances (EPS) and damaging the internal structure of the sludge, leading to sludge conduce bound water release. According to scanning electron microscope (SEM) images, the two types of modified diatomite powder maintained the porous structure and showed a more complete and uniform structure compared to natural diatomite.


Assuntos
Filtração , Esgotos , Cátions , Cetrimônio , Terra de Diatomáceas , Polímeros , Pós , Esgotos/química , Tensoativos , Eliminação de Resíduos Líquidos/métodos , Água/química
17.
Front Nutr ; 9: 862277, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399657

RESUMO

Atherosclerosis, as a chronic inflammatory response, is one of the main causes of cardiovascular diseases. Atherosclerosis is induced by endothelial cell dysfunction, migration and proliferation of smooth muscle cells, accumulation of foam cells and inflammatory response, resulting in plaque accumulation, narrowing and hardening of the artery wall, and ultimately leading to myocardial infarction or sudden death and other serious consequences. Flavonoid is a kind of natural polyphenol compound widely existing in fruits with various structures, mainly including flavonols, flavones, flavanones, flavanols, anthocyanins, isoflavones, and chalcone, etc. Because of its potential health benefits, it is now used in supplements, cosmetics and medicines, and researchers are increasingly paying attention to its role in atherosclerosis. In this paper, we will focus on several important nodes in the development of atherosclerotic disease, including endothelial cell dysfunction, smooth muscle cell migration and proliferation, foam cell accumulation and inflammatory response. At the same time, through the classification of flavonoids from fruits, the role and potential mechanism of flavonoids in atherosclerosis were reviewed, providing a certain direction for the development of fruit flavonoids in the treatment of atherosclerosis drugs.

18.
Curr Opin Pharmacol ; 63: 102187, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35245798

RESUMO

Cardio-oncology is an emerging field that mainly focuses on a series of cardiovascular diseases caused by chemotherapy and radiotherapy. In the history and culture of human nutrition, spices have been emphasized for their wide range of economic and medical applications in addition to being used as a food-flavoring agent and food preservative. Currently, an increasing number of studies have focused on the health benefits of spices in preventing cardiovascular diseases, particularly their antioxidant effects against cardiovascular damage. This review summarizes the cardioprotective effects of black pepper, cardamom, clove, garlic, ginger, onion, and other spices against chemotherapeutic drug-induced cardiotoxicity and the potential mechanisms. Here, we recommend dietary adjustments with spices for patients with cancer to prevent or mitigate the cardiotoxicity induced by chemotherapeutic agents.


Assuntos
Doenças Cardiovasculares , Especiarias , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Dieta , Humanos
19.
BMC Anesthesiol ; 21(1): 298, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34847868

RESUMO

BACKGROUND: The spread of spinal anesthesia was influenced by many factors, and the effect of body height on spinal anesthesia is still arguable. This study aimed to explore the impact of height on the spread of spinal anesthesia and the stress response in parturients. METHODS: A total of ninety-seven parturients were allocated into two groups according to their height: the shorter group (body height was shorter than 158 cm) and taller group (body height was taller than 165 cm). Spinal anesthesia was performed with the same amount of 12 mg plain ropivacaine in mothers of different heights. The primary outcome of the study was the success or failure of the spinal anesthesia. The secondary outcomes of the study were stress response, time to T6 sensory level, the incidence of hypotension, the satisfaction of abdominal muscle relaxation and patient VAS scores. RESULTS: The rate of successful spinal anesthesia in the shorter group was significantly higher than that in the taller group (p = 0.02). The increase of maternal cortisol level in the shorter group was lower than that in the taller group at skin closure (p = 0.001). The incidence of hypotension (p = 0.013), time to T6 sensory block (p = 0.005), the quality of abdominal muscle relaxation (p <  0.001), and VAS values in stretching abdominal muscles and uterine exteriorization (p <  0.001) in the shorter group were significantly different from those in the taller group. Multivariate analysis showed that vertebral column length (p <  0.001), abdominal girth (p = 0.022), amniotic fluid index (p = 0.022) were significantly associated with successful spinal anesthesia. CONCLUSIONS: It's difficult to use a single factor to predict the spread of spinal anesthesia. Patient's vertebral column length, amniotic fluid index and abdominal girth were the high determinant factors for predicting the spread of spinal anesthesia. TRIALS REGISTRATION: ChiCTR-ROC-17012030 ( Chictr.org.cn ), registered on 18/07/2017.


Assuntos
Anestesia Obstétrica/métodos , Raquianestesia/métodos , Estatura , Cesárea , Ropivacaina/farmacocinética , Estresse Fisiológico/efeitos dos fármacos , Adulto , Anestésicos Locais/farmacocinética , Feminino , Humanos , Estudos Prospectivos
20.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638866

RESUMO

RBM10 is an RNA-binding protein that regulates alternative splicing (AS). It localizes to the extra-nucleolar nucleoplasm and S1-1 nuclear bodies (NBs) in the nucleus. We investigated the biological significance of this localization in relation to its molecular function. Our analyses, employing deletion mutants, revealed that RBM10 possesses two S1-1 NB-targeting sequences (NBTSs), one in the KEKE motif region and another in the C2H2 Zn finger (ZnF). These NBTSs act synergistically to localize RBM10 to S1-1 NBs. The C2H2 ZnF not only acts as an NBTS, but is also essential for AS regulation by RBM10. Moreover, RBM10 does not participate in S1-1 NB formation, and without alterations of RBM10 protein levels, its NB-localization changes, increasing as cellular transcriptional activity declines, and vice versa. These results indicate that RBM10 is a transient component of S1-1 NBs and is sequestered in NBs via its NBTSs when cellular transcription decreases. We propose that the C2H2 ZnF exerts its NB-targeting activity when RBM10 is unbound by pre-mRNAs, and that NB-localization of RBM10 is a mechanism to control its AS activity in the nucleus.


Assuntos
Processamento Alternativo , Núcleo Celular/metabolismo , Sinais de Localização Nuclear/metabolismo , Proteínas de Ligação a RNA/metabolismo , Motivos de Aminoácidos , Núcleo Celular/genética , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Sinais de Localização Nuclear/genética , Domínios Proteicos , Transporte Proteico , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...